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Abstract. A theory of nonlinear acoustic Love wave propagation in a ferroelastic film on an
elastic substrate is presented. The main stress in this work is put upon the investigation of the
properties of the nonlinear acoustic waves in films close to the phase transition, which is different
from previously reported works on this subject. The parameters of the striction superstructure
(elastic domains) nucleating close to the paraelastic–ferroelastic phase transition are estimated
for real ferroelectric films. In the framework of the asymptotic approach the effective nonlinear
Schr̈odinger equation for the envelope of the Love wave is derived and the possibility of bright-
and dark-soliton formation is discussed. It is demonstrated that for a change of career wave
wavenumber the transition between stable wave propagation and the modulation instability is
realized. It is found that the strong dispersion of the soft Love wave near the ferroelastic phase
transition is responsible for such a transition.

1. Introduction

Ferroelastic materials are interesting objects for study of different physical effects related
to propagation of acoustic waves in such materials. The anomalous decrease in the values
of the ferromagnetic elastic moduli close to the phase transition leads to the change of the
character of the surface acoustic wave propagation. In particular, the essential decrease
in Rayleigh wave velocity and, as a consequence, the increase in the penetration depth
of this wave into the crystal close to the ferroelastic phase transition was predicted and
calculated [1]. The polarization of this wave becomes almost transverse. These predicted
features of the propagated Rayleigh wave were then experimentally observed in uniaxial
ferroelectric–ferroelastic crystals [2–4].

Another interesting type of acoustic wave for practical application is the so-called Love
wave. This is a pure shear wave propagating in a film–substrate elastic structure. The
propagation of linear Love waves with horizontal transverse polarization in a ferroelastic film
on a massive substrate was studied [5, 6]. It was shown, that for temperatureT = Tk < TC
(TC is the Curie temperature of the bulk ferroelectric medium) the Love wave becomes
unstable. The wave frequency and group velocity vanish for the wavenumberk = kc 6= 0,
and the wave condenses into the domain phase localized in the film and substrate close to
their interface. Domain structure nucleation is connected to the necessary decrease in the
energy of the long-range fields of the elastic stresses penetrating into the substrate interior
at a distance of the order of the domain period. The sign of the dispersion coefficient for the
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Love waveD = ∂2ω/∂k2 depends on the wavenumberk (ω is the wave frequency). In the
long-wavelength approximation (kL � 1) dispersion is negative,D < 0, but for kL � 1
dispersion is positive (D > 0) (L is the film thickness). The remarkable feature of the Love
wave spectrum close to the ferroelastic phase transition is the high sensitivity to temperature
variations. Elastic domain nucleation in ferroelastic–ferroelectric epitaxial films of PbTiO3

grown by metal organic chemical vapour deposition on MgO(001), SrTiO3, and PZT, and
PZT/YBCO/LaAlO3 close to the ferroelastic phase transition was experimentally observed
and investigated [7–9]. Instabilities of other surface acoustic waves (e.g. Rayleigh waves)
were also investigated. In particular, instability of the surface acoustic waves localized close
to the plane defect was theoretically studied [10].

In the last few years the nonlinear properties of the surface acoustic waves have been
intensively investigated (see for reviews [11–14]). The density of the elastic energy close
to the crystal surface can be quite high due to the excitation of the acoustic waves near
this surface. This, in turn, can stimulate large amplitudes of the elastic displacements
at the surface. Thus the nonlinear effects become essentially important for the surface
acoustic waves and can be easily observed [15–20]. Nonlinearity can cause changes in
wave parameters, generation of second and higher harmonics of the surface waves [14, 16]
and plate modes [17], surface wave soliton formation [21], formation of envelope solitons
[11–14, 22–25] and bistability of surface waves [26, 27].

In this paper we investigate the propagation of the nonlinear shear Love wave in a
ferroelastic film on an elastic substrate. We shall demonstrate that for a wavenumber change
the transition between the stable wave propagation and the modulation instability is realized
due to change of the wave dispersion. We shall examine the different envelope solitons for
the nonlinear wave produced by the linear Love modes and show that the direction of the
wave propagation becomes inverse in the region where the group velocity changes its sign.

2. Model

We shall investigate a ferroelastic film with thicknessL on a semi-infinite elastic substrate
occupying the spacey < 0 (see figure 1). Let us suppose for the sake of definiteness a phase
transition of symmetry D2h–C2h existing at the temperatureTC in the ferroelastic medium.
At this transition the shear deformationsηxz appear spontaneously. Such transitions are
typical for KH3(SeO3)2 [28] and LaP5O14 [29] crystals. The free energy of the system can
be represented in the following form [14]

F =
∑
n=1,2

∫
Vn

dvn
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η
(n)
αβ = 1

2(e
(n)
αβ + e(n)βα + e(n)µα + e(n)µβ ). (2)

Hereη(n)αβ is the deformation tensor,e(n)αβ = ∂u(n)α /∂xβ is the distortion tensor andu(n) is the

displacement vector,c(n)αβµν , c
(n)
αβµνγ δ, c

(n)
αβµνγ δσλ are the elastic moduli of the second, third

and fourth order, respectively,3(n) is the tensor describing the dispersion of the elastic
moduli. The indicesn = 1, 2 denote the parameters of the film and substrate respectively.
The volume of the film and substrate and described byV1,2. The components of the tensor
3
(n)
αβµνγ δ are proportional toξ2

0αTC [30] and ξ0 is the correlation length of fluctuations far
from the phase transition temperatureTC of the bulk ferroelastic material,ξ0 ∼ b whereb
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is the lattice constant,α is a numerical constant with the dimension of the value of stress
over temperature. Further we shall introduce the Voigt notation for elastic moduli and for
the crystal under consideration we assume that the following moduli do not vanish

c
(n)
ij , c

(n)
αα , c

(n)
ααi, c

(n)
ijk, c

(n)
αβγ (α 6= β 6= γ ), c(n)ijkl, c(n)ijαα, c(n)iαβγ (α 6= β 6= γ ). (3)

The indicesi, j , k, α, β, γ will be used to describe elastic moduli in the Voigt notation:
the indicesi, j , k can be equal to 1, 2, 3 and the indicesα, β, γ can be equal to 4, 5, 6.
We assume also that close to the Curie temperature the modulusc

(1)
55 = α(T − TC) and the

other coefficients are weakly dependent on the temperature. Furthermore, it is convenient
to expand the expression for free energy in terms of the distortion tensor [31]
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where the tensorsS are related to the tensorsc by substitution of equation (2) into (1)
and manipulating the resulting expansion into the form (4). We need these conversion
expressions for the first-, second- and third-order tensors [14]:

Sαβµνγ δ = cαβµνγ δ + δαµcβνγ δ + δαγ cµνβδ + δµγ cαβνδ (5a)

Sαβµνγ δσλ = cαβµνγ δσλ + δαµcσλγ δνβ + δαγ cσλµνβδ + δγµcσλαβδν + δσαcγ δµνλβ + δσµcγ δαβλν
+δσγ cµναβλδ + δσµδγαcλνβδ + δγµδσαcλβνδ + δσγ δαµcλδβν (5b)

with δαβ the Kronecker delta. The tensorsS are in general not symmetric with respect to
interchanges of the two indices in a pair, in contrast to the elastic moduli.

Figure 1. Geometry of the problem. The Love wave propagates along thez-axis; elastic
displacementu in the wave is along thex-axis;L is the film thickness.

3. Linear Love waves

Let us consider a Love wave with the horizontal polarizationu(1)x propagating along thez-
axis (see figure 1) in the crystal in a paraelastic phase (T > Tk). The elastic displacement in
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a Love wave can be found from the equation of motion along with the boundary conditions

ρ(n)
∂2u

(n)
i

∂t2
= ∇j σ (n)ij (6)

σ
(n)
iy = 0|y=L
σ
(1)
iy = σ (2)iy u

(1)
i = u(2)i (i, j = x, y, z)|y=0.

(7)

This displacement is

u(1)x = u0
cosq1(L− y)

cosq1L
exp[i(ωt − kz)]

u(2)x = u0 exp[i(ωt − kz)+ q2y].
(8)

Hereσ (n)ij = δF/δe(n)ij − (∂/∂xk)δF/δ((∂/∂xk)e(n)ij ) is the stress tensor,ρ(n) is the density of
the ferroelastic medium,

q1 =
{

1

c
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66

[ρ(1)ω2− (3(1)
551k

2+ c(1)55 )k
2]

} 1
2
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66
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2

.

(9)

For thick ferroelastic filmsL � b the spatial dispersion of the soft elastic modulus
c
(1)
55 influences essentially the Love wave spectrum close to the phase transition and for

wavenumber such thatk � L−1. Thus, this fact should be taken into account for calculation
of the boundaries of the stable paraelastic phase and the period of the nucleating domain
structure [5]. For the indicated range of wavenumbers the Love wave period (that is
proportional to its penetration depth into the interior of the substrate) is much less than
the inhomogeneity of the elastic strain fields across the film, therefore the dispersion of the
elastic modulusc(1)66 and the elastic moduli of the substrate can be neglected, since their
influence on the Love wave spectrum is negligibly small.

The dispersion equation for Love waves has the following form

cotan(q1L) = q1c
(1)
66

q2c
(2)
66

. (10)

Equation (10) has an analytical solution in two limiting cases. ForkL � 1 the dispersion
equation is [13]

ω2 = ω2
k = c(2)55 k

2

[
1− ρ

(1)2

ρ(2)
2

c
(2)
55

c
(2)
66

k2L2

]/
ρ(1). (11)

For kL� 1 the dispersion equation can be represented as [5]

ω2 = ω2
mk = [(c(1)55 +3(1)

551k
2)k2+ (2m− 1)2π2c

(1)
66 /4L

2]/ρ(1) m = 1, 2, . . . . (12)

It should be noted that each new solution (new surface Love wave) emerges atk = km =
πm/L. The mode withm = 1 is the soft mode. For this mode one can write

q1 ≈ π [1− (kL)−1(c
(2)
55 c

(2)
66 )
− 1

2 c
(1)
66 ]/2L (q1� k)

q2 ≈ k(c(2)55 /c
(2)
66 )
− 1

2 .
(13)

The spectrum of the soft Love wave is shown in figure 2. The temperature of the loss of
stability of the paraelastic phase with respect to the nucleation of the domain structureTk
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and the wavenumberkc of the critical domain structure can be calculated from the condition
of the vanishing of the Love wave frequency and the group velocity

ω2
1k = 0

dω2
1k

dk
= 0. (14)

They are

Tk = TC − πα−1L−1(3
(1)
551c

(1)
66 )

1/2

kc = 2π/dc =
(
π2

4L2

c
(1)
66

3
(1)
551

)1
4

.
(15)

Heredc is the period of the critical domain structure. It follows from (15) that the phase
transition in the film appears at a temperature which is less than the phase transition
temperature for the bulk ferroelastic medium (Tk < Tc). Estimations show that for the
KH2(SeO2)3 crystal [28]

dc ∼ 1.4× 10−3L1/2 cm TC − Tk ∼ 3.34× 10−5L−1 K

L is expressed in centimetres.

Figure 2. The spectrum of the critical Love wave atT = TC in a film of KH3(SeO3)2 on a
fused quartz substrate (L = 10−4 cm).

For thick ferroelastic films (L� b) the following inequalities are valid:

q1� kc � b−1 dc � L

and the penetration depth of the surface solution into the substrate is

l = q−1
2 ∼ dc � L.

For k ∼ kc and T ∼ Tk equation (12), describing the dispersion relation for the critical
Love wave, can be represented in the following form

ω2 = ω2
1k = [α2(T − Tk)(TC − Tk)/(23(1)

551)+3(1)
551(k

2− k2
c )

2]/ρ(1). (16)

The spectrum of the critical Love wave forT ∼ Tk in the KH3(SeO3)2 film is shown in
figure 2.
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4. Nonlinear Love waves. Envelope solitons

In case of nonlinear Love waves we search for the solution to the set of equations (6) with
the boundary conditions (7) in the following form

u(n)x =
∞∑
p=0

A
(n)

2p+1(y) cos(2p + 1)θ

u(n)y =
∞∑
p=0

B
(n)

2p (y) cos 2pθ (17)

u(n)z =
∞∑
p=1

D
(n)

2p (y) sin 2pθ.

Hereθ = kz−ωt , n = 1, 2 and functionsA, B, D should be expanded in formal asymptotic
series

A
(n)

2p+1 =
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m=0

ε2p+2m+1A
(n)

2p+1,2m+1

B
(n)

2p =
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ε2(m+p)B(n)2p,2m for p 6= 0 B
(n)

0 =
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m=0

ε2(m+1)B
(n)

0,2m (18)

D
(n)

2p =
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m=0

ε2(m+p)D(n)

2p,2m

whereε is a small parameter proportional to the Love wave amplitude.
Substituting equation (17) into equations (6) and (7) and equating to zero coefficients

at different harmonics we obtain the infinite set of differential equations with the boundary
conditions. In the first-order approximation onε the solutions to these equations are given
as

A
(1)
1 = a1 cosq1y + a∗1 sin q1y

A
(2)
1 = f1 exp q2y.

(19)

Further we shall consider in detail the nonlinear Love waves produced by the lowest (soft)
linear mode (m = 1). In this case we have

a1 = f1 ≈ a∗1
q1L
� a∗1 q1 ≈

√
q2c
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66 /(Lc

(1)
66 ) q2 ≈

√
(c
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66

in the long-wavelength limitkL� 1 and

a1 = f1 ≈ a∗1 cotanq1L� a∗1 q1 ≈ π/2L� kc q2 ≈ k
√
c
(2)
55 /c

(2)
66

for k ∼ kc; a1 anda∗1 are both real. The dispersion equation for the nonlinear Love wave is

ωNL = ωk + ε2N(a2
1 + a∗21 ) (20)

and ωk is described by formulae (11) and (16) in the liner approximation forkL � 1
and k ∼ kc, respectively,N is called the nonlinear term and is described asN =
3
16(k
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for kL� 1 and

N = 3k4S
(1)∗
1

64ρ(1)ω1k
S
(1)∗
1 = S(1)1 −

T
(1)2

1

c
(1)
33

− 2T (1)
2

2

c
(1)
22

(22)

for k ∼ kc. The following definitions were used while deriving equations (21) and (22)

S
(1)
1 ≡ S(1)xzxzxzxz = c(1)5555+ 6c(1)355

S
(1)
2 ≡ S(1)xyxyxyxy = c(1)6666+ 6c(1)266

S
(1)
3 ≡ S(1)xyxyxzxz = c(1)5566+ c(1)255+ c(1)366+ 4c(1)456

T
(1)

1 ≡ S(1)xzxzzz = c(1)355+ c(1)33

T
(1)

2 ≡ S(1)xzxzyy = c(1)255+ c(1)23 .

The detailed derivation of the spectrum of the nonlinear Love wave is presented in the
appendix. We use results obtained in the appendix to describe the properties of the nonlinear
waves and envelope solitons. According to the Lighthill criterion [32] a nonlinear wave
with a stationary profile becomes modulationally unstable if the following inequality holds:

D/N < 0. (23)

In the long-wavelength approximation (kL � 1) the Love wave possesses negative
dispersion

D = − 3k4L2

ρ(2)
2
ω3
k

c
(2)3

55

c
(2)
66

< 0. (24)

Therefore this wave is modulationally stable forS(1)∗1 < 0 and unstable forS(1)∗1 > 0. Since
the sign of the dispersion coefficient depends on the wavenumber of the wave, it is possible
to see the transition from the stable regime of propagation to the unstable one simple by
changing the wavenumber or the wave frequency. Fork ∼ kc the wave dispersion is
positive,D = 4k2

c3
(1)
551/(ρ

(1)ω1k) > 0. Therefore, for this case, the nonlinear Love wave is
modulationally stable forS(1)∗1 > 0 and is modulationally unstable forS(1)∗1 < 0. The case
whenS(1)∗1 > 0 is realized when the ferroelastic phase transition is the phase transition of
the second order, and the case whenS

(1)∗
1 < 0 is typical for the ferroelastic phase transition

of the first order [5]. The modulation instability can lead to the appearance of a set of
solitons propagating along the direction of the group velocity of the initial wave.

From the dispersion equations for nonlinear Love waves (20) one can easily obtain the
nonlinear Schr̈odinger equation for the envelope amplitude of the wave using the methods
of geometrical optics [33]. The complex envelope amplitude of the wave is of the following
form

A = εa exp(iθ)+ CC. (25)

We denote alsoθ = kz − ωt + ϕ, ϕ = constant, anda ≡ a∗1 for kL � 1 anda ≡ a1

for k ∼ kc. Assuming thata and ϕ are functions slowly varying in time and space, the
frequencyω and wavenumberk can be defined in the following manner

ω(z, t) = −∂θ
∂t
= ω(k = k0)− ∂ϕ

∂t
k(z, t) = ∂θ

∂z
= k0+ ∂ϕ

∂z
(26)

wherek0 is the wavenumber of the linear wave. Substituting equation (25) into equation (20)
and expanding the functionω(k) into a series in (k − k0) close to the linear valuek0, one
obtains the nonlinear equation in second-order approximation

∂ϕ

∂t
+ vg ∂ϕ

∂z
+ 1

2
D

(
∂ϕ

∂z

)2

+Nε2a2 = 0 (27)



9534 I E Dikshtein and S A Nikitov

where the Love wave group velocity isvg = ∂ω/∂k; vg andD are defined atk = k0, a = 0.
Combining equation (27) with the equation of continuity

∂a2

∂t
+ ∂(a

2vg)

∂z
= 0 (28)

we obtain the following nonlinear parabolic equation

i

(
∂A

∂t
+ vg ∂A

∂z

)
+ 1

2
D
∂2A

∂z2
− ε2N |A|2A = 0 (29)

and A = a exp(iϕ). The solution of equation (29) depends essentially on the sign of
coefficientsN andD. For example, this equation has the simplest localized solution in the
long-wave approximation (kL� 1), whenN > 0, and fork ∼ kc, whenN < 0. It is

A = A0 sech
(z − vgt)

z0
exp

(
it

T

)
(30)

wherez−1
0 = εA0

√|N/D|, T −1 = −Nε2A2
0/2. This solution corresponds to the localized

solution for the elastic displacement

u(1)x = a(y) sech

(
z − vgt
z0

)
cos(kz −�t)

u(2)x = f exp(q2y) sech

(
z − vgt
z0

)
cos(kz −�t)

(31)

wherea(y) ≈ a1 cosq1y andf = a1 for kL� 1; a(y) ≈ a(∗)1 sin q1y andf = πa(∗)1 /kcL

for k ∼ kc. The wave frequency� = ωk − 1/T is related to the wavenumber by the
dispersion relations (20) in which, however,N should be replaced byN/2. The wave
frequency� is higher (respectively, lower) than the frequency of the linear Love wave
for kL � 1 (k ∼ kc). We note here that the soliton velocityvg changes its sign at the
point wherek = kc. The solution (31) describes the so-called bright solitons. However,
equation (29) also has a solution in the form of localized perturbations of the stable plane
wave (so-called dark solitons) forkL� 1 (N < 0) or for k ∼ kc (N > 0). This solution is

u(1)x = a(y) tanh
(z − vgt)

z0
cos(kz −�t)

u(2)x = f exp(−q2y) tanh
(z − vgt)

z0
cos(kz −�t)

(32)

where the wave frequency� = ωk − 2/T is described by the relations (20) forkL � 1
and k ∼ kc, respectively. This frequency is lower (or higher) than the linear Love wave
frequency. Dark solitons can be excited simply by change the phase of the generator [34].
It should be noted that the developed asymptotic approach makes it possible to calculate the
nonlinear waves and the discrete set of solitons produced by the higher linear Love modes
(m > 1). It is easy to show that the dispersion equations for the nonlinear Love waves
are also described by equation (20) whereω = ωmk (12) withm > 1 andN depending on
the combination between the elastic moduli and the wavenumberk. For m > 1 solitonic
solutions of the nonlinear parabolic equation (29) are analysed in the same way as the
solitons for the soft Love wave. Forkm > kc the velocities of the nonlinear wave and
solitonic excitations change sign atk = kc.
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5. Conclusion

In the present work we considered propagation of a nonlinear Love wave in a thick (L� b)
ferroelastic film situated on a massive substrate and in the case when the temperature is close
to the ferroelastic phase transition. We show the existence of different types of nonlinear
excitation, namely bright solitons and the waves of the stationary profile. We show also
that for a change of wavenumber the direction of the soliton propagation becomes reversed.
Similar features of nonlinear wave propagation are expected in magnetic and ferroelectric
crystals and solid solutions close to phase transitions accompanied by nucleation of the
modulated and domain structures. We note here that different phase transitions in magnetics
(see, e.g., [35]) are ferroelastic phase transitions according to their symmetry classification.
One can govern the parameters of nonlinear acoustic waves in such ferroelastics by external
magnetic or electric fields. We plan to consider in future work the features of nonlinear
acoustic waves in superthin films with thicknessL ∼ b grown on massive substrates.
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Appendix

In this appendix we introduce the scheme for the derivation of the dispersion equation for
the nonlinear Love wave in a first-order approximation on a small parameterε. In this
approximation we introduce the solution (17) of the set of equations (6) with the boundary
conditions (7) as

u(n)x = A(n)1 (y) cosθ u(n)y = B0+ B2(y) cos 2θ (A1)

u(n)z = D2(y) sin 2θ. (A2)

Substituting equations (A1) and (A2) into equations (6) and (7) and equating to zero
coefficients at different harmonics we obtain the infinite set of differential equations with
the boundary conditions. They are(
ρ(n)ω2+ c(n)66
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1

(
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1
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1

∂A
(n)

1

∂y
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+ε2
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(n)
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∂

∂y

[
∂A

(n)

1

∂y

∂

∂y

(
B
(n)
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1

2
B
(n)

2

)]
− T (n)2 k2A

(n)

1

∂

∂y

(
B
(n)

0 −
1

2
B
(n)

2

)

+T (n)3 k
∂

∂y

(
D
(n)

2

∂A
(n)

1

∂y

)
+ T (n)1 k3A

(n)

1 D
(n)

2

+1

2
T
(n)

5 k

[
∂A

(n)

1

∂y

(
− 2kB(n)2 +

∂D
(n)

2

∂y

)

− ∂

∂y

[
A
(n)

1

(
− 2kB(n)2 +

∂D
(n)

2

∂y

)]]}
= 0 (A3)
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4

(
ρ(n)ω2+ c

(n)

22

4

∂2

∂y2
− k2c

(n)

44

)
B2+ 2(c(n)44 + c(n)23 )k

∂D
(n)

2

∂y

= 1

4
T
(n)

2 k2∂A
(n)2

1

∂y
− 1

4
T
(n)

4

∂

∂y

(
∂A

(n)

1

∂y

)2

+ k2T
(n)

5 A
(n)

1

∂A
(n)

1

∂y
(A4)

c
(n)

22

∂B
(n)

0

∂y2
= −1

4

[
T
(n)

4

∂

∂y

(
∂A

(n)

1

∂y

)2

+ k2T
(n)

2

∂A
(n)2

1

∂y

]
(A5)

4

(
ρ(n)ω2+ c

(n)

44

4

∂2

∂y2
− k2c

(n)

33

)
D
(n)

2 − 2k(c(n)44 + c(n)23 )
∂B

(n)

2

∂y

= k

2

[
T
(n)

3

(
∂A

(n)2

1

∂y

)2

− k2T
(n)

1 A
(n)2

2 + T (n)5

∂

∂y

(
A
(n)

1

∂A
(n)

1

∂y

)]
. (A6)

Here

S
(n)

1 ≡ S(n)xzxzxzxz = c(n)5555+ 6c(n)355

S
(n)

2 ≡ S(n)xyxyxyxy = c(n)6666+ 6c(n)266

S
(n)

3 ≡ S(n)xyxyxzxz = c(n)5566+ c(n)255+ c(n)366+ 4c(n)456

T
(n)

1 ≡ S(n)xzxzzz = c(n)355+ c(n)33

T
(n)

2 ≡ S(n)xzxzyy = c(n)255+ c(n)23

T
(n)

3 ≡ S(n)xyxyzz = c(n)366+ c(n)23

T
(n)

4 ≡ S(n)xyxyyy = c(n)266+ c(n)22

T
(n)

5 ≡ S(n)xyyzxz = c(n)456+ c(n)44 .

The boundary conditions at the surfacey = 0 are

A
(1)
1 = A(2)1 B

(1)
0 = B(2)0 B

(1)
2 = B(2)2 D

(1)
2 = D(2)

2 (A7){
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12
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1 + 2kT (1)3 D
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]}
∂A

(1)
1
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+2ε2T
(1)
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[(
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1
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(1)
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)
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(1)
1
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]
+ 2ε2kT

(1)
5 A

(1)
1
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∂D
(1)
2
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)

= c(2)66

∂A
(2)
1

∂y
(A8)

c
(1)
22

∂B
(1)
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∂y
+ 1
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[
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2 k2A
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2 + T (1)4

(
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(1)
1

∂y
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∂B
(2)
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∂y
(A9)

c
(1)
44

(
− 2kB(1)2 +

∂D
(1)
2

∂y
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T
(1)

5 A
(1)
1

∂A
(1)
1

∂y
= c(2)44

(
− 2kB(2)2 +

∂D
(2)
2

∂y

)
(A10)

c
(1)
22

∂B
(1)
2

∂y
+ 2kc(1)23D

(1)
2 −

k2

4
T
(1)

2 A
(1)2

2 + 1

4
T
(1)

4

(
∂A

(1)
1

∂y

)2

= c(2)22

∂B
(2)
2

∂y
+ 2kc(2)33D

(2)
2 . (A11)

The boundary conditions at the surfacey = L are described by equations (A8)–(A11) where,
however, the right-hand side is equal to zero. In following we consider the case when a film
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of nonlinear medium is located on the surface of a substrate of linear elastic medium. This
saves us tedious calculations but does not violate the generality of considerations. Therefore,
we do not include the nonlinear terms in the right-hand side of equations (A8)–(A11) and
we shall neglect such terms in equations (A3)–(A6) for the substrate (n = 2).

We search for the solution to the set of equations in the following form

A
(1)
1 = a1 cosq1y + a∗1 sin q1y

B
(1)
0 = b00y + b0 sin 2q1y + b∗0 cos 2q1y

B
(1)
2 =

∑
i=1,2

(b
(i)

2 sinh q(i)1 y + b(i)
∗

2 coshq(i)1 y)+ b2 sin 2q1y + b∗2 cos 2q1y (A12)

D
(1)
2 =

∑
i=1,2

(d
(i)

2 coshq(i)1 y + d(i)
∗

2 sinh q(i)1 y)+ d2 cos 2q1y + d∗2 sin 2q1y

A
(2)
1 = f1 exp(q2y) B

(2)
2 =

∑
i=1,2

f
(i)

2 exp(q(i)2 y) D
(2)
2 =

∑
i=1,2

f
(i)∗
2 exp(q(i)2 y).

Here the coefficientsb(i)2 , b(i)
∗

2 , d(i)2 , d(i)
∗

2 , f (i)2 andf (i)
∗

2 are calculated from the boundary
conditions (A7)–(A11), the parametersq1 and q2 describing the distribution of the elastic
displacements inside the film and substrate are found from the following relations

�2(ω, k, q1)− ε2N1(a
2
1 + a∗

2

1 ) = 0 (A13)

q2 =
√
(c
(2)
55 k

2− ρ(2)ω2)/c
(2)
66 . (A14)

The remaining coefficients are

b
(1)
2 = ε2q1(a

2
1 − a∗

2

1 )Gb/161 b
(1)∗
2 = −ε2q1a1a

∗
1Gb/81

d
(1)
2 = ε2k(a2

1 − a∗
2

1 )Gd/161 d
(1)∗
2 = ε2ka1a

∗
1Gd/81

b
(1)
0 = −ε2γ2(a

2
1 − a∗

2

1 )/16qc(1)22 b
(1)∗
0 = ε2γ2a1a

∗
1/8qc

(1)
22

d0 = ε2kγ3(a
2
1 + a∗

2

1 )/16(c(1)33 k
2ρ(1)ω2).

(A15)

In expressions (A12)–(A15) the following notations are adopted

q(1,2)n = 2(Q1n ±
√
Q2

1n −Q2n)/c
(n)

22 c
(n)

44

Q1n = k2[c(n)22 c
(n)

33 + c(n)
2

44 − (c(n)44 + c(n)23 )
2] − ρ(n)ω2(c

(n)

44 + c(n)22 )

Q2n = 4c(n)22 c
(n)

44 (ρ
(n)ω2− k2c

(n)

44 )(ρ
(n)ω2− k2c

(n)

33 ) (n = 1, 2) (A16)

Gb = g2�3− k2g3(c
(1)
44 + c(1)33 ) Gd = g3�2− q2

1g2(c
(1)
44 + c(1)33 )

γ2 = T (1)2 k2− T (1)4 q2
1 γ3 = T (1)1 k2− T (1)3 q2

1

1 = c(1)22 c
(1)
44

(
q2

1 +
q
(1)2

1

4

)(
q2

1 +
q
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1

4

)
(A17)

g2 = k2(T
(1)

2 + 2T (1)5 )+ q2
1T

(1)
4 g3 = q2

1(T
(1)

3 + 2T (1)5 )+ k2T
(1)

1

�2 = q2
1c
(1)
22 + k2c

(1)
44 − ρ(1)ω2 �3 = k2c

(1)
33 + q2

1c
(1)
44 − ρ(1)ω2

�2(ω, k, q1) = ω2− (q2
1c
(1)
66 + k2c

(1)
55 + k43

(1)
551)/ρ

(1) (A18)
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N1 = 3

32ρ(1)

[
k4S

(1)
1 +

4

9
k2q2

1S
(1)
3 + q4

1S
(1)
2 −

1

31
(k2g2

3�
2+ q2

1g
2
2�3

−2k2q2
1g2g3(c

(1)
44 + c(1)23 ))−

2

3

(
k2γ 2

3

c
(1)
33 k

2− ρ(1)ω2
+ γ 2

2

c
(1)
22

)]
. (A19)

To calculate the spectrum of nonlinear waves we substitute the solution (A12) into the
equations for the boundary conditions (A7)–(A11). Simple analytical expressions for the
spectrum of nonlinear Love waves can be calculated in two limiting casesk ∼ kc and
kL � 1. For k ∼ kc we obtain the expressions for the amplitudes of the fundamental
harmonic

a1 = f1 = a∗1 cotan(q1L) cotan(q1L) ≈ q1c
(1)
66

q2c
(2)
66

q1 ≈ π

2L
� kc a∗1 � a1 q2 =

√
(c
(2)
55 k

2− p(2)ω2)/c
(2)
66 .

(A20)

In this case the dispersion equation for the nonlinear Love wave is

ωNL = ω1k + ε2Na∗
2

1 (A21)

and ω1k is described by the formula (16) in the linear approximation and the following
notations are used

N = N1(ω = 0, k, q1 = 0)

2ω1k
= 3k4S

(1)∗
1

64ρ(1)ω1k
S
(1)∗
1 = S(1)(1) −

T
(1)2

1

c
(1)
33

− 2T (1)
2

2

c
(1)
22

. (A22)

It should be noted that the inclusion of the cubic terms in the expression for the free energy
(1) leads to the appearance of the sagittal components for the displacementuy anduz and
to the renormalization of the elastic modulusS(1)

∗
1 .

For kL� 1 the amplitudes of the fundamental harmonics can be represented as

a1 = f1 ≈ a∗1
q1L
� a∗1 q1 ≈

√
q2c

(2)
66 /(Lc

(1)
66 ) q2 ≈

√
(c
(2)
55 k

2− ρ(2)ω2)/c
(2)
66 .

(A23)

The dispersion equation for the nonlinear Love wave is

ωNL = ωk + ε2Na2
1 (A24)

with

N = 3

16

k6L2

ρ(2)

c
(2)
55

c
(2)
66

S
(1)∗
1 (A25)

S
(1)∗
1 = S(1)1 −

4

9

ρ(1)

ρ(2)

c
(2)
55

c
(1)
66

S
(1)
3 +

(
ρ(1)

ρ(2)

c
(2)
55

c
(1)
66

)2

S
(1)
2 . (A26)

Deriving (A25) and (A26) we took into account that close to the ferroelastic phase transition
the following inequality is valid: |c(1)55 | � c

(2)
55 . We neglected also (without the loss of

generality) the additions toS(1)
∗

1 due to sagittal components of the elastic displacements
while deriving (A26).
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